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Abstract

The identification of abrupt changes in the behaviour of a system is of crucial importance in
areas such as medicine, climatology, biology... Here we will discuss the problem in the quantum
world, we will consider a source generating a certain state which suffers an alteration and suddenly
changes to another. The question is to find the position of the change based on measures carried
out on the states with the greatest possible probability of success. Recently, the solution to the
problem was found when the two states, before and after the change, were pure. In this thesis,
we will study the case in which the states are mixed and therefore the uncertainty in the system
increases. We will use both analytical and numerical techniques to find the optimal measure that
maximises the probability of correctly identifying the point of change.

Resum

La identificació de canvis bruscs en el comportament d’un sistema es presenta de crucial
importància en àmbits com la medicina, climatologia, biologia... Aqúı discutirem el problema en el
món quàntic, considerarem una font generadora d’un tipus d’estat que pateix un error i sobtadament
canvia a un altre. La qüestió consisteix en trobar la posició del canvi a partir de mesures realitzades
sobre els estats amb la màxima probabilitat d’encertar possible. Recentment, es va trobar la solució
pel problema quan els dos estats, abans i després del canvi, eren purs. En aquesta tesi, estudiarem
el cas en que els estats són barreja i per tant la incertesa en el sistema augmenta. Utilitzarem
tant tècniques anaĺıtiques com numèriques per tal de trobar la mesura òptima que maximitza la
probabilitat d’encertar el punt de canvi.
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Preface

In all cases, a quantum state is specifically and only a mathematical symbol
for capturing a set of beliefs or gambling commitments

— Quantum Mechanics as Quantum Information, Fuchs [2002]

Ever since the “discovery” of Quantum Mechanics (QM), the scientist community was shocked
by the effects and strange phenomena emerging from this theory. Almost a century has passed and
we still struggle to understand the surprising features of this theory, one of the most evolving of
our present days, specially in the context of quantum information. This arises from the limits of
classical computation that we face today. After all, information is encoded in a physical system,
whatever it is and in the form we want, so the study of information and computation should be
linked to the study of the underlying physical processes. This point of view is enriched in the
well known statement “It from Bit” first pronounced by John Wheeler suggesting ”the idea that
every item of the physical world has at bottom — at a very deep bottom, in most instances — an
immaterial source and explanation; that what we call reality arises in the last analysis from the
posing of yes-no questions and the registering of equipment-evoked responses; in short, that all
things physical are information-theoretic in origin and this is a participatory universe”.

Today, we still don’t have a unified view on what is a quantum state and what information does
it encode. But this is a question that has been there since its origins, Einstein was one of the first
who put into question the completeness of quantum mechanics [Einstein et al., 1935]. John Bell
later proved that the hidden variable theory proposed by Einstein was not possible or it would
otherwise violate local realism [Bell, 1964]. Nevertheless, even if we now take QM as a complete
theory of reality, we haven’t been able to discover what a quantum state is. We should content
ourselves with its probabilistic nature.

Quantum Mechanics formalism is squeezed into 5 postulates (e.g. see Nielsen and Chuang [2000])
that cover the rules of a very big game. From these postulates, the scientist community has been
able to move forward with the development of Quantum Field Theory with all its consequences and
the creation of a new field in physics: Quantum Information. Many problems that are encountered
in classical computation were brought to the quantum regime like cloning, teleportation, factoring,
discrimination... and the main subject of this project, Quantum Change Point. “There is a feeling
that the advent of quantum information theory heralds a new way of doing physics and supports
the view that information should play a more central role in our world picture” says Fuchs [2002].
This is certainly a reality, for instance the European Union set a flagship in 2016 for the next 10
years with a founding of e1 billion1 to investigate in the development of certain applications.

We seek to continue this trend and set the basics for future work in the topic, provided with the
knowledge gained in the subjects of Quantum Physics and Quantum Information mainly, together
with the experience build upon the other courses during the Bachelor in Physics.

1https://qt.eu/about/
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Notation

I will try to use the common notation in quantum information theory and concretely the same
as in Nielsen and Chuang [2000].

|ψ〉 State vector or “ket” labelled by ψ

〈ψ| Dual vector or “bra”, the conjugate transpose of |ψ〉
〈ψ|φ〉 Inner product or “braket”

|ψ〉〈φ| Outer product or “dyad”

Hn n-dimensional Hilbert space

ρ Density matrix

⊗ Tensor product or Kronecker product

⊕ Orthogonal sum

ρ⊗n Kronecker product of n times the state ρ

A,B,Π, ... Matrix

In n× n identity matrix

0n n× n zero matrix

σ = (σ1, σ2, σ3) Vector of Pauli matrices

A ≥ 0 A is a positive semi-definite matrix

‖•‖1 Trace-norm

‖•‖2 Euclidean norm

trA Trace of A

P̂ , Π̂ Projector, P̂ 2 = P̂

Hn Space of n× n hermitian matrices

E(ρ) Trace preserving quantum operation on the state ρ

M Generalised measure

p(j | k) Conditional probability of finding j given k

Ps/Pe Success/Error probability

ξk A priori probability of the k-th state

B(p) Bernoulli distribution with parameter p ∈ [0, 1]

F Space of feasible solutions of a SDP

{0, 1}n Space of all possible binary numbers between 0 and 2n − 1

i = (i0i1 . . . in−1) n-bit binary number.
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Abbreviations

MED Minimum Error Discrimination.

POVM Positive Operator-Valued Measure.

QCP Quantum Change Point.

QM Quantum Mechanics.

QSD Quantum State Discrimination.

RW Random Walk.

SDP Semi-Definite Programming.

USD Unambiguous State Discrimination.
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1. INTRODUCTION

1 Introduction

This thesis aims to study one of the fundamental topics in quantum information which is
Quantum State Discrimination (QSD) in the particular case of the Quantum Change Point (QCP).
A topic which is widely developed in the classical regime and it is of crucial importance in the
detection of abrupt changes. It is used in a wide range of disciplines because of the intrinsic ability
to the early warning of small deviations of a system with respect to a reference behaviour considered
as normal [Basseville et al., 1993]. For instance, it can be used to make prediction of catastrophic
natural phenomena or in the study of climate change [Reeves et al., 2007]. From a mathematical
perspective, the change point problems tries to identify times when the probability distribution of
a stochastic process or time series changes. The changes may be in the mean, standard deviation,
dynamics... with one or multiple change points.

In the classical problem, we are given a series of data {xk}nk=1 where xk correspond to the
result of an observation made at epoch k. The only knowledge on the system resides on the values
{xk}nk=1 which are imposed by the results of a measurement. The advantage of QM is that what is
given are the states and there is the possibility of choosing the appropriate measure as to increase
the probability of guessing right the change point. Yet, the disadvantage is that quantum mechanics
doesn’t allow to distinguish perfectly non-orthogonal states, it is our job to find how well we can do.

Recently, this problem has been brought to the quantum regime by Sent́ıs, Bagan, Calsamiglia,
Chiribella, and Munoz-Tapia [2016]. They studied the single abrupt equally-likely quantum change
point problem where the state of a system drastically switches to another. The initial and the final
states are known and assumed to be pure, no other information is given apart from the knowledge
of the existence of a change point that can happen with equal probability in any location. Under
these conditions, an analytical expression for the maximum probability of success is obtained that
only depends on the overlap of the two states.

In this thesis, we will study a generalisation to the problem in which the states are no longer pure
but mixed, that is, the initial and final states are a combination of pure states. As a consequence,
the uncertainty increases, not only we ignore the position of the change point but also the initial
and final states are ambiguous.

Section 2 provides the basic theory of states discrimination, Sections 3 and 4 explain the
numerical methods that will be used in order to find the best measure and in Section 5 we present
solutions for the QCP problem having definite initial and final states.

1.1 Formalism

In this section, I will present the basics of QM formalism that is needed for the project and will
skip others aspects, although important are not relevant for the work.2

Together with each physical system S there is an associated d-dimensional complex space Hd,
the Hilbert space. The elements of this space constitute the possible states of such system and are
represented by a normalised column vector or ket |ψ〉 labelled by the letter ψ, which may be a
tuple encapsulating other properties like position, momentum, spin... All the information of that
system is self-contained in the state |ψ〉 but not all the information is retrievable as we will see.

The smallest, non trivial, space with retrievable information is the two-dimensional Hilbert
space H2. The space is spanned by two states labelled {|0〉 , |1〉} that form the computational basis.
A state |ψ〉 ∈ H2 is said to be a qubit, in complete analogy to the classical bit of information. A
qubit can be written by a complex linear combination or superposition of them like

|ψ〉 = ψ0 |0〉+ ψ1 |1〉 , |ψ0|2 + |ψ1|2 = 1 (1.1)

where the components ψj ∈ C are determined through the inner product of |ψ〉 and |j〉. In Dirac
notation, the inner product of a Hilbert space is represented by the product of a bra and a ket,
being the bra the conjugate transpose of the ket, written as 〈ψ| = |ψ〉†. Then, the braket of two
states is

〈φ|ψ〉 =

1∑
j=0

φ∗jψj = 〈ψ|φ〉∗ (1.2)

2For a more detailed explanation, see the wonderful book of Nielsen and Chuang [2000] or the fantastic 20-paged
summary of the basics of quantum information by two of its fathers, Bennett and Shor [1998].
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1. INTRODUCTION

The state |ψ〉, under a measurement that distinguishes the states |0〉 and |1〉, behaves like |0〉 with

probability p0 = |ψ0|2 and like |1〉 with probability p1 = |ψ1|2. The normalisation follows from the
conservation of p0 + p1 = 1.

The study of two of more systems S0, . . . ,Sn−1 is made through the tensor product or kronecker
product of the corresponding spaces H0 ⊗ · · · ⊗ Hn−1. When all the spaces are two-dimensional we
will write H⊗n2 , the computational basis in this big space of 2n elements is spanned by the vectors
{|j〉 | j ∈ {0, 1}n} where {0, 1}n is the space of all the combinations of n zeros and ones. Sometimes,
the state |j〉 will also be written as |j0j1 . . . jn−1〉 = |j0〉 ⊗ |j1〉 ⊗ · · · ⊗ |jn−1〉 interchangeably,
although the first notation is preferable for its simplicity. If at some point there is confusion on
which space |j〉 belongs, a subscript on the ket will be written for clarification |j〉A.

A measurement is made by an observable A that has an associated Hermitian matrix or operator
A ∈Hn which acts on the quantum states of some Hilbert space. In the computational basis, the
operator reads A =

∑n
j,k=1 ajk |j〉〈k| where |j〉〈k| is the outer product.

The hermiticity property of all observables allows a spectral decomposition as a sum A =∑
λ aλP̂λ being {aλ} the eigenvalues of A and P̂λ the projector onto the eigenspace spanned by the

eigenvectors corresponding to aλ obeying the orthogonality and completeness relations

P̂λP̂µ = P̂λδλµ (1.3a)∑
λ

P̂λ = Id (1.3b)

If A is a physical observable, then {aλ} are the physical values that we can observe after measuring
a state |ψ〉. The probability that the result aλ is obtained given that the state measured was |ψ〉 is

p(aλ|ψ) = 〈ψ|P̂λ|ψ〉 (1.4)

and it holds that
∑
λ p(aλ|ψ) = 1 on account of eq. (1.3b).

The measure is completely defined once the operators {P̂λ} are given, then for each P̂λ we
associate the hypothesis that the value of the physical property A observed is aλ. This measure
is called projective or von Neumann measure because the elements are orthogonal projectors
(eq. (1.3a)) [von Neumann, 1955]. The number of projectors is limited by the dimension of the
space, otherwise the orthogonality condition wouldn’t be satisfied. For this reason, we define
a generalised measurement or Positive Operator-Valued Measure (POVM) as a set of positive
operators {Πj}nj=1 [Kraus, 1983], with n not necessarily equal to d, satisfying the completeness and
positivity conditions

n∑
j=1

Πj = Id (1.5a)

Πj ≥ 0 ∀j (1.5b)

An observable of H2 is expressed, in the most general form, as a complex linear combination of
the identity matrix I2 and the Pauli matrices {σi}3i=1

3 which span the space of 2× 2 Hermitian
matrices H2,

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
(1.6)

The elements of the computational basis are by convention the eigenvectors of the third Pauli
matrix such that σ3 |0〉 = + |0〉 and σ3 |1〉 = − |1〉.

Moreover, the 3 Pauli matrices are the generators of rotations in SU(2), the symmetry group of
qubits. A rotation of a qubit |ψ〉 along the direction n by an angle θ is performed by the unitary
operator

Uθ,n = exp

(
−iθ

2
n · σ

)
(1.7)

3Sometimes also expressed as {σx, σy , σz}.
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1. INTRODUCTION

|0〉

|1〉

x

y

ρ

θ

ϕ

Figure 1: Three dimensional representation of a qubit ρ in the Bloch sphere.

The states we have been talking so far are called pure states, they represent situation of perfect
knowledge on a system. However, there may be situations in that the state of the system is not
well-defined and we have to make use of mixed states generated by an ensemble of pure states
Ξ = {ξk, |ψk〉}nk=1 with

∑n
k=1 ξk = 1, meaning that the we can find the state |ψk〉 with probability

ξk. A mixed states is represented by a positive-semidefinite hermitian density matrix ρ with trace
equal to one,

ρ =

n∑
k=1

pk |ψk〉〈ψk| (1.8)

The state ρ is called pure when there is only one state in the ensemble with probability 1, then
ρ = |ψ〉〈ψ| and we return to the case above. Moreover, the ensemble of states Ξ might contain other
mixed states ρk occurring with probability ξk. In any case, the probability of observing aλ when
measuring A given ρ in eq. (1.8) is

p(aλ|ρ) = Tr
(
P̂λρ

)
(1.9)

which reduces to (1.4) when ρ is pure.
By construction, the density operator (1.8) is also hermitian and admits a spectral decomposition

ρ =
∑n
k=1 ξk |ξk〉〈ξk| with positive eigenvalues ξk and corresponding eigenvector |ξk〉 satisfying∑

k ξk = 1 and
∑
k |ξk〉〈ξk| = Id. They constitute the “eigen-ensemble” {ξk, |ξk〉} where the values

ξk are interpreted as the probability that the system was in the state |ξk〉. An important property
follows from this fact, given a density matrix ρ it is not possible to know from which ensemble
Ξ it was constructed. Or equivalently, if two ensembles Ξ and Ξ′ (with the same or different
number of elements) lead to the same density matrix, the two systems S and S ′ are completely
indistinguishable.

In two dimensions, a mixed states can be expressed as linear combination of the identity matrix
I2 and the Pauli matrices as

ρ =
I2 + r · σ

2
(1.10)

for some real coefficients r = (r1, r2, r3). The eigenvalues of (1.10) are (1± ‖r‖2)/2, but because ρ
is positive by definition we must have ‖r‖2 ≤ 1, with equality in the case of pure states. The value
r = ‖r‖2 is known as the purity of the state and represents the radial distance from the origin.
The product r · σ symbolises the pseudo-scalar product between a vector and a vector of matrices:
r · σ =

∑3
i=1 riσi.

From (1.10), it is clear the correspondence between a qubit and a point in a 3-dimensional sphere.
The state vector r can always be expressed as r = r(sin θ cosϕ, sin θ sinϕ, cos θ) with r ∈ [0, 1] the
modulus, θ ∈ [0, π) the angle with respect the z-axis and ϕ ∈ [0, 2π) the angle with respect to the
x-axis. The sphere where qubits are represented is called the Bloch sphere, see fig. 1, the peculiarity
is that the angle between orthogonal states is π in contrast to the usual π/2 of the usual Euclidean
space4.

4The reason for this is a factor of two between the symmetry groups SU(2) (where qubits live) and SO(3) (the
usual rotation group), in other words, to return to the same state one must make a rotation of 4π degrees.
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2. QUANTUM STATE DISCRIMINATION

2 Quantum State Discrimination

Fundamental properties of quantum mechanics make it impossible to perfectly distinguish
non-orthogonal quantum states. Note that, if state discrimination was perfect, it would imply that
quantum cloning could be done perfectly or that quantum entanglement would lead to instantaneous
communication [Gisin, 1998]. For instance, the BB84 quantum key distribution scheme [Bennett
and Brassard, 2014] is based in sending photons polarised in two non-orthogonal basis, usually the
Z and X basis5. Because of the non-orthogonality and the impossibility to distinguish perfectly
quantum states, an eavesdropper that intercepts the message without any knowledge on the basis
the photons were encoded on, won’t be able to read the full sentence. Indeed, if she receives a
photon polarised in the X direction but she measures, unconsciously, in the Z direction there will
be a 50% chance of mistake. Ultimately, one is forced to make a guess and it is the necessity of this
guess that makes quantum mechanics intrinsically indeterministic.

Another example is quantum cloning, if that could be done perfectly then we would be able to
generate n copies of two non-orthogonal quantum states |ψ〉 and |φ〉. Since they are not orthogonal,
we can’t perfectly discriminate a single pair of them. However, if n copies are considered, then the
overlap of the composite system goes as |〈ψ|φ〉|n which tends to 0 as the number of copies increases.
Therefore, because a general quantum state cannot be cloned, state discrimination cannot be done
perfectly.

The question now is, how can we best discriminate different quantum states? We can’t certainly
predict the result of a measurement, however, the foundations of quantum mechanics gives us with
accuracy the probabilities of those outcomes. These follow some classical probability distribution
and with the help of classical information theory we could find ways to distinguish them. The idea
is to vary over the measurements that we make on a system to find the one that makes the classical
distinguishability the best it can be [Fuchs, 1996].

First of all, it is not possible to go to the Hilbert space, put a ruler between quantum states and
decide from this whether they are the same or not, just because a posterior measurement might
change its nature. In any case, we can define a pseudo-distance between two general states ρ and ρ′

as
D(ρ, ρ′) = ‖ρ− ρ′‖1 (2.1)

which is the so called trace distance [Nielsen and Chuang, 2000], denoting by ‖A‖1 the trace norm
(or norm one)

‖A‖1 = tr
√
AA† =

∑
λ

|aλ| (2.2)

where {aλ} are the eigenvalues of A.
Two quantum states are said to be close to each other if the trace distance is near zero. If the

states are qubits, with state vector r and r′ respectively, the expression (2.1) reduces to

D(ρr, ρr′) =
‖r − r′‖2

2
(2.3)

where ‖a‖2 =
∑
k |ak|

2
is the usual vector norm (or norm two). Notice that this pseudo-distance is

half the ordinary distance between two points inside a sphere.

2.1 Quantum Hypothesis Testing

Consider that Alice prepares one state of some ensemble Ξ = {ξk, ρk}nk=1, all living in a d-
dimensional Hilbert space Hd. The probability that Alice chooses ρk is ξk, with

∑
k ξk = 1. After

that, this state is send to Bob who is asked to distinguish it among the states inside the set Ξ. In
Bob’s hands, the system is described by the mixed state

ρ =

n∑
k=1

ξkρk (2.4)

5Defined as the eigenvalues of the Pauli matrices σz and σx respectively.

4



2. QUANTUM STATE DISCRIMINATION

Bob can perform any measurement on the state, the most general form of such measurement is
a POVM measure M = {Πj}mj=1 satisfying eqs. (1.5a) and (1.5b). Note that, m is not in general
equal to n (the number of states), but it can be greater or smaller. This number is related to the
number of hypothesis that can be made. For instance, if m > n then we can assign to a combination
of multiple outcomes of our measurement the same ρk ∈ Ξ. On the other hand, if m < n then there
will be some states for which we will have to make a guess, unless we know that they occur with 0
probability.

If the Πj are orthogonal projectors (ΠiΠj = δijΠi), then M is a von Neumann measure and
m ≤ n, but they do not have to be. As an example, the operators Πj = I/d associated to the
no-measurement strategy are clearly not projectors.

Actually, it is found by Davies [1978] that the number of POVM elements m needed to distinguish
n pure states is bounded between n ≤ m ≤ n2 for linearly independent states. The number of
POVM operators can be any inside this range but the process becomes an arduous task if the
optimisation needs to be made also on the number of hypothesis. For simplicity, in our problem,
we will fix m = n, i.e. the number of hypothesis is the same as the number of states, where j is the
proposition that the state was ρj . We can do this because, even if m was greater than the number
of states, we could group the operators from our hypothesis to build only n operators verifying
eqs. (1.5a) and (1.5b).

On account of eq. (1.9), the probability of outcome j (Πj) conditional that the given state was
ρk is

p(j | k) = p(M = Πj | Ξ = ρk) = tr(Πjρk) (2.5)

Therefore, the state k will be successfully identified whenever the hypothesis Πk is selected
which happens with probability p(k | k). Putting all together, it follows that the probability of
correctly guessing the state is

Ps =

n∑
k=1

ξk tr(Πkρk) (2.6)

and because the states Ξ are not mutually orthogonal, there will be non-zero probability of failure
(measure of an incorrect state): 0 ≤ Ps ≤ 1. The expression for the error probability is just
Pe = 1− Ps.

2.2 Optimality conditions

In general, a measure M will give us some success probability (2.6) which will be suboptimal.
We seek to find the POVM that maximises the success probability. It has been found by Holevo
[1973] that the optimal operators must satisfy the conditions

Πj(ξjρj − ξkρk)Πk = 0 ∀j, k = 1, . . . ,m (2.7)

Γ− ξkρk ≥ 0 ∀k = 1, . . . , N (2.8)

with the definition of the so called Lagrange operator

Γ =

n∑
k=1

ξkΠkρk (2.9)

which places the role of a Lagrange multiplier taking account of the constraint (1.5a). It can be
shown from the first condition that the Lagrange operator is hermitian. Take the sum over j and k
in eq. (2.7), because Πj = Π†j and ρk = ρ†k, we are left with Γ† − Γ = 0 proving the hermiticity
of the Lagrange operator. Indeed, eqs. (2.7) and (2.8) are not independent but the first can be
derived from the second.

In fact, the first condition (2.7) can also be written, by summing over j, in terms of the Lagrange
operator Γ as

(Γ− ξkρk)Πk = 0 ∀k = 1, . . . ,m (2.10)

which gives us a way to determine the operators Πk once Γ is known. Indeed, both Πk and Γ− ξkρk
are positive operators, and thus eq. (2.10) can hold only if they are orthogonal, that is Πk lays
entirely within the kernel of Γ− ξkρk [Weir et al., 2017].
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2. QUANTUM STATE DISCRIMINATION

Equation (2.8) gives a necessary and sufficient condition for an optimal measurement, while
eq. (2.7) gives only a necessary condition. In our posterior work, we will seek to find such
measurement whose Lagrange operator Γ (2.9) is hermitian and for all the initial states in the
ensemble Ξ we have that the second Holevo condition is verified. As we will see in Section 3,
the Holevo condition eq. (2.8) is the same as the optimality conditions imposed by Semi-Definite
Programming.

2.3 Ambiguous vs. unambiguous state discrimination

In the problem of quantum state discrimination, there are two major techniques: Minimum
Error Discrimination (MED) and Unambiguous State Discrimination (USD). The former approach,
also named ambiguous state discrimination, consist on minimising the probability of guessing a
wrong result Pe, which can sometimes be achieved by not making any measurement at all and
randomly guessing the result. In contrast, the latter has no error, if hypothesis Πj is obtained
we are 100% sure of that the state was ρj , yet we allow the possibility of an inconclusive result
by introducing an extra operator Π?. The two tasks are equally valid, the use of one or another
only depends on the requirements of the problem. For example, in situations where we can’t be
wrong we should use USD instead of MED. In fact, there is a correspondence between both as it is
possible to take a MED to a USD [Bagan et al., 2012].

In this thesis, the method used will be MED for a simple reason. Unambiguous state dis-
crimination forces the operators to satify tr(Πjρk) = 0 if j 6= k, this is not possible in general
since both Πj and ρk are positive operators. Only when the states {ρk}nk=1 have disjoint kernels,
ker(ρk) ∩ ker(ρl) = ∅ ∀k 6= l, USD would be possible [Raynal, 2006; Rudolph et al., 2003] which is
not the case in the QCP problem. Therefore, in what follows, we will be working in the context of
MED which now proceed to explain in more detail.

In Section 2.1, the form of the success probability was deduced. It follows that the probability of
error is Pe = 1− Ps, so finding the minimum Pe is the same as maximising the success probability
as a function of the measure,

Ps = max
M

n∑
k=1

ξk tr(Πkρk) (2.11)

under the conditions eqs. (1.5a) and (1.5b). Putting the sum inside the trace, we identify the
operator to be maximised as Γ and from eq. (2.8) we can rewrite the problem as that of finding

Ps = min
Γ

tr Γ (2.12)

subject to the constraints Γ− ξkρk ≥ 0.
The meaning of this is that, for an arbitrary set of positive observables {Πj} that add up to the

identity, we can construct the corresponding Lagrange operator. However, only the one which is
optimal according to the relation eq. (2.8) will give the maximum probability. Even though two
measures M and M′, with Γ and Γ′ respectively, are found to be optimal, the success probability
will still be the same [Helstrom, 1969].

Equation (2.11) may look like a tour de force to the reader, having to maximise over all the
possible measures. It happens that this is as complicated as it seems, very few analytical solutions
are found while most of the results in quantum discrimination problems are found using numerical
methods which will be described in section 3. The analytical solutions are only well known for
the case of discrimination between two states or for geometrically uniform states. For example,
the case of two states was first found by Helstrom who provided an exact value for the success
probability [Helstrom, 1969] which we will reproduce in the following section. Then, Bae and Kwek
[2015]; Barnett [2001] showed a minimum-error discrimination strategy between multiply symmetric
states with a deeper study of the so called three mirror-symmetric states [Andersson et al., 2002;
Chou, 2004; Ha and Kwon, 2013]. For a general number of states, there are unambiguous strategies
found by Chefles and Barnett [1998] when the states are linearly independent and for minimum
error discrimination, it is found that the discrimination between n qubit states can be divided into
patches of only 4 qubits with a known optimal solution [Weir et al., 2017]. Also, Deconinck and
Terhal [2010] provide a geometrical representation of the optimal measure in the Bloch sphere.
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2. QUANTUM STATE DISCRIMINATION

2.4 Two-state discrimination

It is instructive to work out the solution to the simplest problem in QSD following the process
explained previously. We will evaluate the maximum success probability for the case of two general
states Ξ = {(ξ1, ρ1), (ξ2, ρ2)} and then give some simplified versions for when the states are pure,
qubits6... The measure is made up of only two positive operators {Π1,Π2} that satisfy Π1 + Π2 = I.
The maximum guess probability is given by eq. (2.12) where the Lagrange operator is

Γ = ξ1Π1ρ1 + ξ2Π2ρ2

but using the completeness relation, the dependence in one of the operators can be removed. Write{
Γ+ = ξ2ρ2 + Π1X

Γ− = ξ1ρ1 −Π2X

defining
X = ξ1ρ1 − ξ2ρ2 (2.13)

Although the process can be done with Γ+ or Γ−, it is convenient to symmetrise those expressions
and write the Lagrange operator for the problem as

Γ =
1

2
(Γ+ + Γ−) =

1

2
(ρ+ ΛX) (2.14)

where ρ = ξ1ρ1 + ξ2ρ2 and Λ = Π1 − Π2. The original POVM operators are related to Λ by
Π1 = (I + Π)/2 and Π2 = (I−Π)/2; while Π1,Π2 ≥ 0 the condition over Λ is that −I ≤ Λ ≤ I.

Putting all together, the success probability becomes

Ps = max
Π

tr Γ =
1

2

(
1 + max

Λ
tr ΛX

)
(2.15)

From the definition of X, because ρ1 and ρ2 are positive, its eigenvalues can be divided into
positive and negative parts. Denoting by X+ (X−) the subspace spanned by the eigenspace of
positive (negative) eigenvalues and λ+ (λ−, in absolute value) its sum, by the spectral theorem X
reads X = λ+X+ − λ−X− where X+, X− ≥ 0. Thus, the optimal measurement Λ is the one that
projects the positive subspace to itself and flips the sign of the negative part, i.e. Λ = X+ −X−.
Finally, the success probability is [Bae and Kwek, 2015]

Ps =
1

2
(1 + λ+ + λ−) =

1

2
+

1

2
‖X‖1 (2.16)

and the POVM consists on
M = {Π1 = X+, Π2 = X−} (2.17)

where we have used that X+ + X− = I. Equation (2.16) is known as the Helstrom bound and
establishes the best success probability to discriminate two mixed states [Helstrom, 1969] which
depends only on the trace distance between the two.

It is easily checked that this measure is indeed optimal by constructing the Lagrange operator
from eq. (2.14) using the measure found in eq. (2.17), it follows that

Γ =
1

2
[ρ+ (X+ −X−)X] =

1

2
ρ+

1

2
(λ+X+ + λ−X−) (2.18)

Then, for the two states in Ξ the Holevo condition reads

Γ− ξ1ρ1 =
1

2
(−ξ1ρ1 + ξ2ρ2) +

1

2
ΛX = −1

2
X +

1

2
ΛX = λ−X− ≥ 0

Γ− ξ2ρ2 =
1

2
(ξ1ρ1 − ξ2ρ2) +

1

2
ΛX =

1

2
X +

1

2
ΛX = λ+X+ ≥ 0

Since the Holevo conditions are satisfied, we can be sure that the measure (2.17) is optimal.

6The following is not restricted to two dimensional spaces but is general to any two level system in a Hd.
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2. QUANTUM STATE DISCRIMINATION

We should be careful with the previous result (2.17) since there may be cases where all eigenvalues
are positive or negative if the a priori probabilities are different. Then, one of the eigenspaces
will be the full space, in fact, it will correspond to the hypothesis of the state with maximum
probability. The result is telling us not to waste any effort at all in measuring because we have
enough information beforehand to achieve the maximum success probability by just guessing the
state with maximum probability.

Of course, eq. (2.16) is much simplified when specific cases are considered. For example, if the
states have a priori equal probabilities ξ1 = ξ2 = 1/2, the success probability is

Ps =
1

2
+

1

4
‖ρ1 − ρ2‖1 (2.19)

For qubits with state vector r1 and r2 respectively

Ps =
1

2
+

1

4
|p1 − p2 + ‖ξ1r1 − ξ2r2‖2|+

1

4
|p1 − p2 − ‖ξ1r1 − ξ2r2‖2| (2.20)

which, for the case of equal a priori probabilities, reduces to

Ps =
1

2
+

1

2
‖r1 − r2‖2 (2.21)

Finally, if ρ1 and ρ2 are pure states |ψ1〉 and |ψ2〉 then [Barnett and Croke, 2009]

Ps =
1

2
+

1

2

√
1− 4ξ1ξ2|〈ψ1|ψ2〉|2 (2.22)

All of the above expressions contain a constant term, which doesn’t depend at all of the states,
and another that depends on the difference between them. Thus, whenever they are the same,
i.e. X is the 0 matrix, the probability of success will be just 1/2 which is to just pick one of the
two possible hypothesis at random. In any other situation, the probability will increase, up to its
maximum value.
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3. SEMI-DEFINITE PROGRAMMING

3 Semi-Definite Programming

Semi-Definite Programming (SDP) is a mathematical technique used to solve linear programming
problems, that is the maximisation or minimisation of a linear convex function f(x) with linear
constraints over the set of all x ≥ 0 [Wolkowicz et al., 2012]. It can be used to solve a problem
analytically but it is mostly used in numerical analysis as solutions can be found efficiently. The
utility of SDP is that a lot of problems in quantum information theory (and many other) can be
cast into the form of a standard SDP which is then solved to the consumer’s pleasure.

Let’s start with some definitions.

Definition 1. A set S is convex if for X,Y ∈ S then λX + (1− λ)Y ∈ S with λ ∈ [0, 1].

Similarly, a function f(X) is said to be convex if f(λX + (1− λ)Y ) = λf(X) + (1− λ)f(Y ) for
all X,Y ∈ S .

Definition 2. A map Φ is hermiticity preserving if Φ(X) ∈H (Y) for all X ∈H (X ).

As said, a linear programming problem consist on the maximisation of a convex linear function
f(x) called the goal function. This, in matrix form, can always be written as the inner product of
two matrices: f(X) = trAX; where X ≥ 0 and A ∈H (X ).

Definition 3. A semi-definite program is a triplet (Φ, A, B), where

1. Φ[•] : X 7→ Y is a hermiticity preserving convex linear map.

2. A ∈H (X ) and B ∈H (Y) are hermitian operators.

for some complex Euclidean spaces X ⊂ Cm×m and Y ⊂ Cn×n.

The standard or primal problem associated with the triplet (Φ, A, B) reads

max
X

trAX

Φ[X] = B (3.1)

X ≥ 0

Our goal is to find the X that maximises the goal function among the X that satisfy the
constraints. Thus, we define the set of feasible solutions of the primal problem as

FP (X ) = {X ∈ X | X ≥ 0 and Φ[X] = B} (3.2)

Note that this is a convex set, any feasible solution may be obtained as a convex combination of
two other. The optimal solution is the X ∈ FP (X ) for which the objective function achieves a
maximum. The optimal primal value of the SDP is defined as

α = sup
X∈FP (X )

trAX (3.3)

It may happen that there is no supremum when FP (X ) = ∅, in such a case, α = −∞.
Together with the primal problem there exist a dual problem which reads

min
Y

trY B

Φ∗[Y ]−A ≥ 0 (3.4)

Y ∈H (Y)

where Φ∗[•] is the dual map defined as

tr(Φ[X]Y ) = tr(XΦ∗[Y ]) (3.5)

In practice, this relation implies that if Φ[•] : Cm×m → Cn×n then Φ∗[•] : Cn×n → Cm×m.
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3. SEMI-DEFINITE PROGRAMMING

We can also construct the convex set of feasible dual solutions as

FD(Y) = {Y ∈ Y | Y = Y † and Φ∗[Y ] ≥ A} (3.6)

and the optimal dual value as
β = inf

Y ∈FD(Y)
trY B (3.7)

In the case there is no feasible solution, FD(Y) is empty, the optimal value is defined to be β =∞.
The dual problem provides us with a way to check if a solution to the primal is optimal.

Theorem 1 (Slater). For every semi-definite program (Φ, A,B) it is true that:

1. If FP 6= ∅ and there exist an hermitian operator Y for which Φ∗[Y ] ≥ A, then α = β and
there exist a primal feasible solution X ∈ FP for which trAX = α.

2. If FD 6= ∅ and there exist an positive semi-definite operator X for which Φ[X] = B, then
α = β and there exist a dual feasible solution Y ∈ FD for which trY B = β.

The proof of this theorem is not difficult but it is needed to introduce the concept of hyperplanes
and closed sets which are out of the scope of this thesis. For a complete proof see the original paper
by Slater [2014] or, for a simplified and user friendly version, the lecture notes by Watrous [2011].

The important corollary of this theorem is that we have a way of checking if X ∈ FP is indeed
the operator that maximises the objective function, just by checking that its dual Y satisfies
Φ∗[Y ] ≥ A.

3.1 SDP in state discrimination

Now that we know the basics of SDP and its formulation, it is time to start applying this
knowledge to the problem of state discrimination. In Section 2, we discussed the form of a state
discrimination problem which involved the maximisation of the success probability eq. (2.6) for all
valid measures M satisfying eqs. (1.5a) and (1.5b). Without effort, we can write the SDP primal
problem

max
{Πj}

n∑
k=1

ξk tr(Πkρk)

n∑
j=1

Πj = I (3.8)

Πj ≥ 0

However, this does not have exactly the standard form as presented in eq. (3.1) but it is easily
recovered. Define the following quantities

A ≡
n⊕
k=1

ξkρk (3.9)

X ≡
n⊕
j=1

Πj (3.10)

B ≡ I2n (3.11)

and the map function

Φ[X] = Φ
[
⊕nj=1Πj

]
=

n∑
j=1

Πj (3.12)

Then, the triplet (A, B, Φ), defined as in eqs. (3.9), (3.11) and (3.12) respectively, form the
general SDP problem in quantum state discrimination. Of course, in concrete examples, we will see
that it can sometimes be reduced to smaller matrices to reduce computational time.
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The dual of this problem is a bit tricky. We first note that the new variable Y must live in a
space C2n×2n

while X ∈ Cn2n×n2n

. Having this set, we see that from a 2n × 2n matrix we have to
write a n2n × n2n matrix which satisfies eq. (3.5). The simplest possibility is the dual map

Φ∗[Y ] =

m⊕
j=1

Y = Ỹ (3.13)

Then, the dual problem reads

min
Y

tr Γ

Ỹ −A ≥ 0 (3.14)

Y = Y †

It is of great importance to notice that eq. (3.14) is equivalent to the Holevo condition (2.8)
for an optimal measurement in the state discrimination problem. From the block form of the
matrices Ỹ and A, Ỹ − A ≥ 0 is the same as comparing the block matrices one by one, i.e.
Y − ξkρk ≥ 0 ∀k = 1, . . . , n. In fact, the space of all feasible dual solutions FD is nothing else than
the space of all Lagrange operators for a given measure, then the optimal Y is just the Lagrange
operator Γ generated by the optimal measures. Indeed, whenever a solution is obtained using SDP,
we are certain that this is optimal as it automatically feasible.

To summarise, we have two ways to calculate the optimal measure. Either by solving the primal
problem which gives the optimal measures in block form or via the dual problem which returns
the optimal Lagrange operator from which we can recover the observables Πj using eq. (2.10).
However, by virtue of Theorem 1, the two solutions are linked and provides a way to check for the
optimality. Indeed, if the operators {Πj} have been found using the primal problem, by constructing

the associated Lagrange operator from eq. (2.9) and checking that Γ̃− A ≥ 0 implies that {Πj}
is optimal and the success probability is Ps = α = β. The inverse process can also be done
theoretically, although it might be difficult in some cases to recover the observables Πj from Γ but,
if this is possible, then checking that

∑n
j=1 Πj = I proves the optimality of the measure and that

Ps = α = β.
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4 Iterative method

SDP provides a robust and efficient way for solving many problems in a wider range of disciplines.
In particular, this method is guaranteed to converge to the real solution. However, in the QCP
discrimination problem, the number of variables increases as O(n2n) for the primal and O(2n) for
the dual producing a numerical overhead that makes it impossible to solve this kind of problems for
more than a few qubits. For instance, for 4 qubits it requires to solve around 600 variables. One
could use the symmetry of ρk to reduce the number of variables, but in any case the computational
cost would still be prohibitive. Instead, we can rely on an efficient iterative method. For low n, we
will still use SDP to benchmark the iterative algorithm, which in contrast to the SDP, it is not
rigorously guaranteed to yield the exact solution.

The method was proposed by Ježek et al. [2002] and consists in iterating the matrix Γ (see
eq. (2.9)) from an initial choice of the operators Πj . The advantage over SDP is that it doesn’t
have to solve for unknown variables but only involves elemental operations between matrices which
are efficiently implemented in all programming languages. Also, at each step, the POVM conditions
eqs. (1.5a) and (1.5b) are automatically satisfied.

Consider the first guess for the measure M(0) = {Π(0)
j }nj=1, the easiest choice is the no-

measurement with Πj = I/n . With them, the first correction to the Lagrange operators is
evaluated using the relation

Γ(1) =

 n∑
j=0

ξ2
j ρjΠ

(0)
j ρj

1/2

(4.1)

and with it, the first correction to the operators

Π
(1)
j = ξ2

j [Γ(1)]−1ρjΠ
(0)
j ρj [Γ

(1)]−1 (4.2)

with {Π(1)
j } still satisfying the completeness relation. This can be seen by taking the sum over j on

the previous equation and substituting by the first correction to the Lagrange operator Γ(1).
In general, the k-th approximation of the Lagrange operator and the measure is given by

Γ(k+1) =

 n∑
j=0

ξ2
j ρjΠ

(k)
j ρj

1/2

(4.3a)

Π
(k+1)
j = ξ2

j [Γ(k+1)]−1ρjΠ
(k)
j ρj [Γ

(k+1)]−1 (4.3b)

After some iterations (n), the solutions should tend to a stationary point (within some interval

±ε, ε > 0 small) for which the last values of Γ(n+1) and {Π(n+1)
j } will correspond to the extreme.

Nevertheless, convergence is not proven for this method, therefore we should check for the optimality
condition (eq. (2.8)) after a stationary solution has been found in order to find out whether the
extreme corresponds to the maximum. If no stationary point is reached or the final values are not
optimal we should try again with a different initial guess for the measure M(0).

The program will be executed until an accuracy of ε ≈ 10−6 is reached in the probability. The
operators, however, may have a worst accuracy than ε, this will be seen while checking for the
optimality of the resulting measure, up to which level eq. (2.8) is satisfied.

To check the optimality, consider that the program outputs the set of operators {Π̃j}, the
numerical test will consist on computing the minimum eigenvalue λk = minλ Γ − ξkρk for each
ρk ∈ Ξ. Only when λk(+ε) ≥ 0 ∀k the solution will satisfy (2.8) and it will be taken as optimal.
There is no need to check for Γ being hermitian as it is by construction.
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5 Quantum Change Point

The case in study is the single equiprobable QCP in a sequence of n non-pure quantum states.
The initial state is characterised by the density matrix ρ which changes abruptly to ρ̃ at some point
in the n possible positions.

The states are sent by Alice one at each time and Bob may choose a measurement to perform on
the states, either local (online) or global (offline). In a local strategy, Bob measures the qubits one
at each time applying a POVM which may depend on the outcome of the previous measurements.
Whereas, in a global strategy, the states are stored in a quantum memory and a measurement is
performed on the composite system of n qubits. If the states are pure, it is found that a global
measurement outperforms any online measurement [Sent́ıs et al., 2016]. Yet, it is still not clear
whether this is true for mixed states. In any case, an online measurement can be of high utility and
easier to implement in reality as it can give you the maximum likelihood position on the go and
there is no need to store the states. We will for now leave this discussion apart, until the expression
for the POVM elements are obtained, since the methods are the same for both.

Bob’s knowledge resides uniquely on the states ρ and ρ̃ and the guarantee that there is a
change point. Effectively, he sees an ensemble of states Ξ = {ρk}n−1

k=0 each happening with the same
probability ξk = 1/n for k = 0, . . . , n − 1, , where n counts the number of qubits send by Alice.
The composite state of a system with a change point in k is expressed as

ρk = ρ⊗k ⊗ ρ̃⊗(n−k) ∈ (H2)⊗n (5.1)

The proposition of a change point excludes the state ρn = |0〉〈0|⊗n from the ensemble, which tells
us that the change hasn’t occurred yet. However, all the states ρ0, . . . , ρn−1 have ρ̃ as the last qubit
in the sequence, providing us with no extra information. Consequently, we can safely remove it to
reduce the length of the sequence to n− 1 qubits and work with an ensemble Ξ = {ρk}nk=0 of n+ 1
states by dropping the proposition of a change point. In the succeeding, we will work with n qubits
and n+ 1 states ρk k = 0, . . . , n that can happen with a priori probability ξk = 1/(n+ 1).

Bob is allowed to perform any measure on the whole system in order to determine k∗ (the
change point position) with highest probability of success or, in other words, Bob has to distinguish
ρk∗ from the others in Ξ with maximum success probability. We know from Section 2 that the
success probability, in the SDP formalism of Section 3.1, is

Ps = max
{Πj}

1

n+ 1

n∑
k=0

tr(Πkρk)

n∑
j=0

Πj = I (5.2)

Πj ≥ 0

In the following sections we will discuss the solution of some SDP problems for specific ρ and ρ̃
analytically, if possible, but mainly we will perform a numerical analysis. Although the goal was to
find a general method to distinguish the change for two general qubits, this was found to be beyond
the scope of this thesis. However, we have found interesting results considering the case of a pure
state going to different mixed states inside the Bloch sphere and between two equally mixed states.

5.1 Pure vs. Pure

The already solved problem considers the change from a pure state to another pure state

|0〉 −−−−−→ |φ〉 = cos
θ

2
|0〉+ sin

θ

2
|1〉 (5.3)

for any θ ∈ [0, 2π).

The states ρk are projectors onto the corresponding state ψk = |0〉⊗k ⊗ |φ〉⊗n−k. Since the
states {|ψk〉}nk=0 are linearly independent (except for θ = 0, both states are the same), the optimal
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measurement is a projective measurement M = {|ϕn〉〈ϕn|}nj=0 [Belavkin, 1975]. It is proven by
Sent́ıs et al. [2016] that the success probability, in the asymptotic limit of large n, is

Ps ≈
4(1− c2)

π2
K2(c2) (5.4)

where c = |〈0|φ〉| is the overlap between the initial and final state and K(x) the complete elliptic
function of the first kind. This limit is achieved by a non-local measurement on the whole set of
particles.

In the following work, we will lay aside this result since the states considered won’t be pure.
However, it will be useful as way to check ours in the limit of the mixed state going to pure, in the
Bloch sphere this is just taking ‖r‖2 → 1.

5.2 Pure vs. Mixed

This section studies the change from a pure state to a mixed state. The initial pure state can
be considered to be ρ = |0〉〈0| without loss of generality as any other pure state is related with this
one by a unitary transformation which will not change the success probability, but only the POVM
elements.

5.2.1 Along the diameter

In the first case, Alice prepares initially the state |0〉 which is affected by an uncorrelated or
white noise which depolarises the state. In the Bloch sphere, the noisy state would correspond to a
point in the diameter joining |0〉 and |1〉. From eq. (1.10), this change is represented as

ρ = |0〉〈0| −−−−−→ ρ̃ =
I2 + rσz

2
(5.5)

for some value of the parameter r ∈ [−1, 1]. When r = −1, the state is |1〉 which is orthogonal
to |0〉 and therefore we expect to distinguish the change point without ambiguity. On the other
hand, if r = 1, all the states ρk are the same, leaving us with no choice but to randomly guess
the position. The reader may question whether in this situation the discrimination task does even
make sense, the answer follows from the fact that Bob’s inability to distinguish the states doesn’t
mean that the change point hasn’t occurred at all. The state |0〉 is just some label used to identify
some complicated state of the system which is then changed to another state still seen as |0〉, since
you don’t have the means to notice the difference7. Therefore, the discrimination problem still
makes sense although the probability of correctly finding the change point cannot be bigger than
the initial a priori probabilities 1/(n+ 1).

Without needing to turn to the mathematics, we can intuitively make a guess on the success
probability by performing local measurements on the system. Because both states ρ and ρ̃ are
diagonal, they can be understood as classical probability distributions, specifically, they resemble
that of a Bernoulli distribution B(p) = {p, 1 − p} where p is the probability of obtaining 0 and
1− p that of getting 1. Think of ρ as a coin with distribution B(1), one that always tosses heads
and ρ̃ as a coin with distribution B((1 + r)/2). When will you guess correctly that the change
was in k? Obviously, whenever in the k-th toss a 1 is obtained which happens with probability
(1− r)/2. Only if the state ρn is given then you will success without error which happens 1/(n+ 1)
times. Thus, for k = 0, . . . , n − 1 the success probability is p(1|k)p(k) = (1 − r)/[2(n + 1)] and
p(n) = 1/(n+ 1) for the extra state ρn, as a result the change is identified with probability

Ps =
1

n+ 1

[
1 + n

1− r
2

]
(5.6)

7Think of a factory producing perfectly spherical red and green marbles which we label as |•〉 and |•〉 respectively.
Alice gives to Bob a marble for him to classify and separate in two boxes depending on the colour. Classically, Bob
can measure the marbles in different ways but the most effective is by looking at them and identifying its colour.
However, if the lights go off, he can no longer use the vision and the two marbles look the same for him, |•〉 and |•〉,
because there is no other measure (label) he can use to distinguish. Bob is then forced to just guess each time the
colour with a 50% change of error.
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5. QUANTUM CHANGE POINT

This function has the behaviour we expected to find: when r = −1, it is equal to unity and when
r = 1 gives the uniform probability 1/(n+ 1). In the limit n� 1, the success probability tends to
the probability of finding a 1 in the k-th position, (1− r)/2. Furthermore, in the limit of large n,
the probability of correctly identifying the change is finite, with value (1− r)/2, which is remarkable
since a priori one would have expected that the probability of correctly guessing the change point
vanishes for large n.

What we have done in this quick gedankenexperiment is to perform the best local measurement
on the states which is given by Helstrom (see eq. (2.17)) that tells you to do a projective measurement
{Π0,Π1} into the states |0〉 and |1〉. This result is completely natural as the state ρ̃ has a non-zero
probability of projecting into the state |1〉 (unless r = 1), so whenever the hypothesis Π1 is selected,
we can be 100% that the state was ρ̃.

Indeed, the systematical analysis together with the numerical results confirm our guess for the
probability (5.6) (see Appendix C.1.1) with the expression for the observables{

Πj = |0〉〈0|⊗j ⊗ |1〉〈1| ⊗ I
⊗(n−1−j)
2 ∀j = 0, . . . , n− 1

Πn = |0〉〈0|⊗n
(5.7)

which constitute the optimal measure M = {Πk}nk=0 with ΠjΠk = δjkΠj . Each Πj is build to
measure a one in the position j+ 1, the first position where the state is ρ̃, the position of the change
point, and leaves the rest untouched. It is quite remarkable that the measures do not depend on
the value of r but are valid for all the possible values of the noise, no matter how strong it is or
how distinguishable are the two states ρ and ρ̃.

5.2.2 To any mixed state

The first generalisation of the previous results is to consider a QCP between a pure state and
any other mixed state, this is

ρ = |0〉〈0| −−−−−→ ρ̃ =
I2 + r · σ

2
(5.8)

for some r = (r1, r2, r3) such that ‖r‖2 ≤ 1. However, because of rotational symmetry, we can
consider without lack of generality that r2 = 0, since all the points lying on the plane z = r3 have
the same success probability as they are related by a global unitary transformation.

The state vector of a qubit lying on the xz plane can be written as r = r(sin θ, 0, cos θ) with
r ∈ [0, 1] and θ ∈ [0, 2π). Then, the structure of the states is

ρk =
1

2n−k
|0〉〈0|⊗k ⊗

(
1 + r cos θ r sin θ

r sin θ 1− r cos θ

)⊗(n−k)

(5.9)

The matrices are no longer diagonal, this is the first encounter with a genuine quantum mechanical
problem where we start having correlations between states.

Due to the difficulty to find the exact expression for the measure, we will make a guess based
on the one previously found for the case of two states lying on the diameter. Taking as reference
eq. (5.7), we propose the measure{

Πj = µ |0〉〈0|⊗j ⊗ Λ⊗ I
⊗(n−j−1)
2 ∀j = 0, . . . , n− 1

Πn = I2n −∑n−1
j=0 Πj

(5.10)

where Λ is a positive operator. Recall that a POVM is a set of positive operators that add up
to the identity. The last operator Πn has to complete the measure, the crucial point here is to
check that the construction yields a positive operator. We have done so by introducing a positive
parameter µ which will be determined by imposing Πn ≥ 0 once the operators are found. With
this choice, we are guaranteed to have at least a feasible measure. To determine the operator Λ,
substitute into the expression for the success probability (2.6). The traces in there give

tr(Πkρk) = µ tr(|0〉〈0|)k tr(Λρ̃) tr(ρ̃)
(n−k−1)

= µ tr(Λρ̃)
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where we have used that tr(ρ) = 1 ∀ρ in the last equality. This result holds for all k = 0, . . . , n− 1,
for k = n we have

tr(Πnρn) = tr

I2n − µ
n−1∑
j=0

Πj

 ρn

 = tr(ρn)− µ
n−1∑
j=0

tr(Πjρn) = 1− nµ tr(Λρ)

Putting the previous two results together, setting ξk = 1/(n+ 1), we obtain

Ps = max
Λ,µ

1

n+ 1
(1 + nµ tr[Λ(ρ̃− ρ)]) (5.11)

subject to the conditions Λ ≥ 0 and µ ≥ 0. This problem has already been solved this in section 2,
the solution is given by Λ being the projector onto the positive subspace of X = ρ̃−ρ. This imposes
0 ≤ µ ≤ 1, otherwise the probability could be greater than one when the states are orthogonal, so
we take µ = 1 as it is the maximum value it can take. Consequently, the probability of successfully
identifying the change is

Ps =
1

n+ 1
(1 + nλ+) =

1

n+ 1

(
1 +

n

2
‖ρ̃− ρ‖1

)
(5.12)

being λ+ the positive eigenvalue of X and Λ the projector onto the positive subspace X+. The last
equality holds since ρ̃− ρ is trace-less and thus the eigenvalues must be the same with opposite sign.
The reader may argue why we take only the positive subspace while in eq. (2.15), for the same
maximisation function, the operator is chosen to be X+ −X−. The reason is simple, in eq. (2.15) Λ
is restricted to be −I2 ≤ Λ ≤ I2 while here 0 ≤ Λ ≤ I2, therefore it can only be X+ or −X−, but
because we want to detect ρ̃ we must choose Λ = X+.

If the states ρ and ρ̃ have state vector r and r̃, then the eigenvalues of ρ̃− ρ are ±‖r̃ − r‖2/2
and thus

Ps =
1

n+ 1

(
1 +

n

2
‖r̃ − r‖2

)
(5.13)

Considering r = (0, 0, 1) and r̃ = r(sin θ, 0, cos θ) one obtains the function

Ps =
1

n+ 1

(
1 +

n

2

√
1 + r2 − 2r cos θ

)
(5.14)

which reduces to (5.6) in the specific cases θ = 0, π.
This strategy takes into account that the initial state is pure so projecting onto itself is the

best we can do to distinguish it from ρ̃, for the rest we consider that the best way to detect the
change is to measure in the POVM {Λ, I2 − Λ} that best discriminates the states ρ̃ and ρ, that is
the Helstrom measure (2.17). We can in turn give an analytical expression for Λ, given that it is a
projector it can be written in the form |λ+〉〈λ+| with |λ+〉 = cos(ϕ/2) |0〉+ sin(ϕ/2) |1〉 a qubit in
the xz plane. The angle ϕ can be calculated in terms of r and θ from the eigenvector corresponding
to the positive eigenvalue of ρ̃− ρ which gives

sin
ϕ

2
=

r sin θ√
r2 sin2 θ +

(
1− r cos θ −

√
1 + r2 − 2r cos θ

)2 (5.15)

The characteristic behaviour of the measurement angle is plotted in fig. 2, where we see that it
ranges from π/2 to π. For r = 0, the function has the constant angle ϕ = π as expected which tells
us to measure in the orthogonal direction to |0〉. For 0 < r < 1, the angle ϕ first decreases as ρ̃
separates from |0〉 until a minimum is reached at θmin = arccos r, after this point the measurement
direction returns smoothly to the orthogonal position. The minimum tells us that we won’t obtain
further information by making the projector and the state parallel, but by making it orthogonal
with respect to the initial state. Finally, for r = 1, the function diverges at θ = 0 because any angle
ϕ will give us the same success probability and grows linearly with θ up to π for the other values.

We will compare the bound (5.14) with the numerical values obtained using the iterative method.
The convergence of the solution is exponentially fast, a precision of ε = 10−6 is achieved after seven
iterations. SDP will be used only for three qubits as a way to validate and compare the results
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Figure 2: Evolution of the measurement direction as function of the angle θ of the second qubit for various
purities r.

obtained via the latter method. Here, in fig. 3, we present the case of n = 9 qubits which is the
largest sequence that we could solve numerically. The results are plotted as function of the angle θ
and the purity r (more plots can be seen in Appendix C.1 for other n). We restrict to the range
θ ∈ [0, π) as the probability (5.14) is symmetrical with respect to the z axis.

On the one hand, the dependence on the angle is somehow the expected, as r → 0 the function
flattens up to the limit Ps = 0.5499998 ± 37 · 10−7 in complete agreement with eq. (5.6) and
approach the limiting function (5.4) as r → 1. The surprising feature is the change in the concavity
of the probability at θinf = arccos r, the same at which the measurement angle is minimum, going
from positive to negative concavity, instead of being linear or monotone as in fig. 7, this is due to
the contributions coming from the correlations. That is, when, θ → 0 the two states ρ and ρ̃ become
almost parallel but with different amplitudes which promote an extra factor of distinguishability
that increases Ps. On the other hand, when ρ̃ becomes antiparallel with ρ (always in the sense of
the Bloch sphere), the states should be maximally distinguishable but, due to the impurity of the
second state, Ps reduces.

On the other hand, the dependence on r is also characteristic, for θ ≤ π/2 the function presents
a minimum at rmin = cos θ. As a result, for a given angle, there exist an amplitude which is less
distinguishable than any other, specifically, less distinguishable than the completely mixed state
ρ̃ = I2/2. After θ goes over π/2, the function grows monotonously as expected.

Equation (5.14) is an exact result which follows from the specific form of the measure (5.10)
considered but it can be seen that it gives a good bound to the success probability. We can say
that it fits with great accuracy the behaviour under a change of θ but it fails to adjust for some
fixed θ, like is seen in the right hand side plots of figs. 3, 10a and 10b with a difference of at most a
10% with respect to the numerical results. This small error is expected since the measure (5.10) is
not optimal, despite being feasible.

The optimality of the measure can be checked by constructing the corresponding Lagrange
operator

Γ =
1

n+ 1

I2n +

n−1∑
j=0

Πj(ρj − ρn)

 (5.16)

which is not guaranteed to be hermitian, neither positive, because of the second term. To see this,
substitute with the expression for the measure (5.10) and the states (5.9),

n−1∑
j=0

|0〉〈0|⊗j
[
(Λρ̃)⊗ ρ̃⊗(n−j−1) − (Λ |0〉〈0|)⊗ |0〉〈0|⊗(n−j−1)

]

17



5. QUANTUM CHANGE POINT

0 π/4 π/2 3π/4 π

θ

0.0

0.2

0.4

0.6

0.8

1.0

P
s

r = 0.0

r = 0.2

r = 0.4

r = 0.6

r = 0.8

r = 1.0

0.0 0.2 0.4 0.6 0.8 1.0

r

θ = 0

θ = π/4

θ = π/2

θ = 3π/4

θ = π

Figure 3: Success probability for the change pure to mixed with n = 9. The leftward plot shows the
dependence on θ for various purities r (dots), the asymptotic solution for n large when r = 1. The rightward
plot shows the dependence on r for various representative θ, also the analytical solutions found previously
when θ = 0, π. The solid colour lines gives the Helstrom bound.

Taking the hermitian conjugate of the previous leads to

n−1∑
j=0

|0〉〈0|⊗j
[
(ρ̃Λ)⊗ ρ̃⊗(n−j−1) − (|0〉〈0|Λ)⊗ |0〉〈0|⊗(n−j−1)

]
So only when [Λ, ρ̃] = [Λ, |0〉〈0|] = 0 we will have Γ = Γ† which is not the case in general since
the three matrices Λ, ρ̃ and |0〉〈0| must commute and therefore share a common basis where the
3 are diagonal. This will happen when ρ̃ lays over the z axis, the three will be diagonal and the
measure (5.10) will be optimal, whereas any other state does not satisfy the requirement to be
optimal. However, because of the simplicity and accuracy of the one proposed, it should not be
rejected at all.

To finish this discussion, we can compare this expression in the limit n� 1 and r = 1 with that
obtained by Sent́ıs et al. [2016]. In this regime, the probability takes the simple form Ps ≈ |sin(θ/2)|.
Plotting both functions together (see fig. 4) we see that only when θ < π/2 the functions differs in
a significant amount. Thus, we may conclude that eq. (5.14) is a good approximation to the success
probability of correctly identifying a change point when the initial state is pure and the final mixed.
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Figure 4: Comparison of the QCP discrimination between two pure states in the asymptotic limit of large
n. In red, the solution (5.4) and in blue, the solution (5.14).
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5.3 Mixed vs. Mixed

In this part, we will take the first step towards the generalisation of the QCP detection between
two mixed states by considering two cases where the symmetry of the system simplifies the resolution
of the problem.

We do not seek to find the expression for the measure but to comment the behaviour of the
probability function and compare it with the Helstrom measure.

5.3.1 Along the diameter

Consider that Alice is sending a mixed state, both before and after the change, polarised in the
z-direction, i.e.

ρ =
I2 + riσz

2
−−−−−→ ρ̃ =

I2 + rfσz
2

(5.17)

with ri, rf ∈ [−1, 1].
This is a quite realistic case as it is very difficult to engineer a machine that generates perfectly

pure states, usually it will be created with a small noise represented by the parameters ri and rf in
eq. (5.17). A first consequence of this initial noise is that there exist no state ρ̃ orthogonal to ρ if
−1 < ri < 1, therefore we know before hand that the measure (5.7) would not be optimal here.

Taking as reference the decomposition of ρ̃⊗(n−k) done in eq. (C.1), the expression for the states
ρk gives

ρk =

2n−1∑
x=0

(
1 + ri

2

)k−Sk
0 (x)(

1− ri
2

)Sk
0 (x)(

1 + rf
2

)n−k−Sn
k (x)(

1− rf
2

)Sn
k (x)

|x〉〈x| (5.18)

where the function Sba(x) with 0 ≤ a ≤ b ≤ n sums all the ones in the binary number x =
(x0x1 . . . xn−1) from xa to xb−1, if no indices are specified the function is understood to mean the
sum over the whole range from 0 to n− 1. The coefficient that goes together with each state x is
understood as the conditional probability p(x | k) that given the change position k the outcome x
is obtained.

On account of what was done to solve analytically the pure to mixed case, we again consider
the POVM operators {Πj} fully diagonal, nothing else can be set to 0 in advance. The product
Πkρk is then trivial, denoting by πkx the x diagonal element of Πk, the expression for the success
probability is

Ps =
1

n+ 1
max
{Πj}

n∑
k=0

2n−1∑
x=0

πkxp(x | k) (5.19a)

subject to

n∑
k=0

πkx = 1 ∀x ∈ {0, 1}n (5.19b)

The measure is constructed as follows: the function in eq. (5.19a) will be maximum when each of
the 2n components of the sum are the greatest they can be, thus, given an x, the only non-vanishing
component πk

∗

x corresponds to
k∗ = arg maxk p(x | k) (5.20)

Then, by the completeness relation (5.19b) we conclude πk
∗

x = 1. Clearly, a measure constructed in
this way automatically satisfies the Holevo conditions of optimality as the minimum eigenvalue of Γ
is at least equal than the maximum of ρk.

Keeping eq. (5.20) in mind, we can rewrite the success probability (5.19a) as

Ps =
1

n+ 1

2n−1∑
x=0

max
k

p(x | k) (5.21)

Let us pause for a moment and meditate about the result found in eq. (5.21). The sum over all
the states ρk has been replaced by the sum over all of its possible eigenstates {|x〉}2n−1

x=0 and we are
saying that the contribution to the total success probability is given by the k that maximises the
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conditional probability p(x|k). The states |x〉 represent the possible outcomes of a local measurement
performed by Bob in the Z basis and the number p(x|k) tells us the state that is more likely to have
a change in k. The maximum over all k for a fixed x is the one that fits best with the characteristics
of the problem.

These outcomes of a quantum measurements follow classical probability distributions, can we
find a classical analogue to the problem? Of course, the answer is yes, just read the previous
paragraph again replacing the word state by path, our problem becomes that of a Random Walk
(RW). The states |x〉 are just paths on a one dimensional euclidean space, “0” meaning “move one
unit upwards” and 1 meaning “move one unit downwards”. The probability of moving up/down
(measuring a 0 or 1) are those of the states in eq. (5.17), before and after the change point, which
constitute two Bernoulli distributions B(p) and B(q) respectively. The change point that best
divides a path x would be given by the maximum distance from the initial point, i.e. the step k
that maximises p(x|k). This last statement was proven by Lorden et al. [1971] and it sets the basics
for the CUSUM algorithm in the classical theory of change point detection [Basseville et al., 1993].
The theorem states that, for a series of random variables x0, x1, . . . , xn distributed according to
some probability distributions pθ0(x) and pθ1(x), before and after the change respectively, the best
guess for the detection of the change is the one that maximises the likelihood function. In our case,
the likelihood function can be interpreted as the distance from the origin in the random walk.

Symmetric solution The general problem doesn’t have an analytical solution but some work
can be done when one considers a mirror change, in which the probability of 0 and 1 are exchanged,

ρ =
I2 + rσz

2
−−−−−→ ρ̃ =

I2 − rσz
2

(5.22)

Then, the expression for the states simplifies to

ρk =

2n−1∑
x=0

(
1 + r

2

)k−Sk
0 (x)+Sn

k (x)(
1− r

2

)n−k+Sk
0 (x)−Sn

k (x)

|x〉〈x| (5.23)

and using that Sk0 (x)+Snk (x) = S(x) we can factor out the terms independent of k so that condition
(5.20) takes the form

k∗ = arg maxk

(
1− r
1 + r

)νk(x)

(5.24)

with the definition νk(x) ≡ 2Sk0 (x)− k. The maximum will be achieved at the same time that νk(x)
presents a maximum, in other words, the distance from the origin is larger than at any other step.
This can be calculated in the asymptotic limit of large n as then all the positions are approximately
equally likely to have a change point and thus eq. (5.21) reduces to

Ps ≈
2n−1∑
x=0

p(x | k) (5.25)

which is just the probability that given the hypothesis of a change point in k, there is a maximum
in x.

The sum in eq. (5.25) represents an arduous task of counting all the path that have a maximum
in k, in Appendix C we provide some insight of how would it be done. For now, remember we are
in the limit of large n and we can take profit of it. Each term is equivalent to moving our reference
point to the maximum and calculating the probability that a RW to the left never returns to the
origin and a RW to the right never crosses it. The multiplication of the two expressions gives the
total probability to have a maximum. Considering r ≥ 0, we end up with

Ps ≈
2r2

1 + r
(5.26)

The previous function has the desired properties: it vanishes at r = 0 as the two states are the
same and is maximum at r = 1 when they are orthogonal. If we wanted to consider r < 0, we
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Figure 5: Solutions for a change point with symmetrical states in the z direction, numerically (dots) for
n = 3, 6, 9, 12 using SDP and analytically (solid black line) in the asymptotic limit of large n. The solid
colour lines correspond to the Helstrom bound.

should reconsider the problem, searching for a minimum instead of a maximum, but because it is
completely symmetrical, this corresponds to replacing r with −r in eq. (5.26).

The numerical analysis can be performed in the same way as in Section 5.2.1, using the
corresponding states in eq. (5.23). The results are plotted in fig. 5 for multiple number of qubits
with the limiting function (5.26). Unfortunately, the computational limits do not allow us to achieve
this limit but we can observe that as n increases, the values approach the asymptotic limit.

The Helstrom bound is obtained from the measure (5.7), calling Λ0 = |0〉〈0| and Λ1 = |1〉〈1| and
substituting into the expression for Ps we encounter the following two terms

tr(Πkρk) = tr(Λ0ρ)
k

tr(π1ρ̃) tr(ρ̃)
(n−k−1)

= tr(Λ0ρ)
k

tr(Λ1ρ̃) k = 0, . . . , n− 1

tr(Πnρn) = tr(ρn)−
n−1∑
j=0

tr(Πjρn) = 1−
n−1∑
j=0

tr(Λ0ρ)
k

tr(Λ1ρ)

Joining both result and inserting them in eq. (2.6), with ξk = 1/(n+ 1), gives

Ps = max
{Λ0,Λ1}

1

n+ 1

(
1 + tr[Λ1(ρ̃− ρ)]

n−1∑
k=0

tr(Λ0ρ)
k

)

The sum is a geometric series with ratio tr(Λ0ρ) which adds to

Ps = max
{Λ0,Λ1}

1

n+ 1

(
1 + tr[Λ1(ρ̃− ρ)]

1− tr(Λ0ρ)
n

1− tr(Λ0ρ)

)
(5.27)

This is the general expression for the Helstrom bound where {Λ0,Λ1 = I2 − Λ0} is the POVM that
best discriminates the states ρ and ρ̃. In our concrete example, substituting for Λ0, Λ1, ρ and ρ̃
gives the expression

Ps =
1

n+ 1

[
1 +

2r

1− r

(
1−

(
1 + r

2

)n)]
(5.28)

Once plotted (see fig. 5), this is found to be suboptimal as compared with the values found
numerically. In fact, in the limit n� 1 the success probability tends to 0 (except for r = 1 which
still we can discriminate without error) instead of leading to (5.26).

An improvement to this method would be to measure locally the states in the Helstrom POVM
{Λ0,Λ1} and then to apply the technique of the random walk to the measure outcomes. Then, by
Lorden et al. [1971], the best guess to the change point position won’t be the first position at which
the hypothesis Λ1 is obtained but that corresponding to the maximum of the RW.
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5.3.2 Equally mixed states

To imagine this case, consider that Alice sends first k states of the first kind |0〉 but there is
an error in the generating machine which rotates this state to |φ〉 in eq. (5.3). For now, the two
states are pure and the change point problem is already solved. Yet, we have to remember that the
real world is noisy and mixes the states during the communication process in the same amount.
Therefore, Bob no longer receives |0〉 or |φ〉 but an effective ρ and ρ̃, where

ρ =
I2 + rσz

2
−−−−−→ ρ̃ = UθρU

†
θ =

I2 + r · σ
2

(5.29)

with r = r(sin θ, 0, cos θ)8 with θ ∈ [0, 2π). This two states are said to have the same purity, i.e.
they lay over the same surface in the Bloch sphere with radius r, and consequently are related by a
unitary transformations.

The values for the success probability have been found using the iterative algorithm and they
are compared with the von Neumann measure{

Πj = µΛ⊗j0 ⊗ Λ1 ⊗ I
⊗(n−j−1)
2 ∀j = 0, . . . , n− 1

Πn = I2n −∑n−1
j=0 Πj

(5.30)

where {Λ0,Λ1 = I2 − Λ0} is the POVM that best distinguishes the states ρ and ρ̃ locally given by
the Helstrom measure (2.17) and µ a positive parameter to ensure Πn ≥ 0.

The results obtained by the iterative method and using the measure (5.30) are plotted in fig. 6,
showing the dependence on the angle and the purity separately. The typical behaviour is obtained,
the probability is minimum when the two states are the same, with a value that goes as 1/(n+ 1),
and maximum when the states are pure and completely orthogonal. It is possible to see that the
values tends to the limit function (5.4) for r = 1 and to (5.26) for θ = π. The bound given by the
projective measure, with µ = 1 as shown by numerical methods, results in a poor approximation
to the real value. This was expected from the previous section, as it should agree with eq. (5.25)
when the states are over the same diameter. Furthermore, the bound doesn’t even follow the same
behaviour as it can be seen from a change of concavity around π/2 and r > 0.4 that doesn’t show
up in the tendency followed by the numerical values. We should conclude that the measure (5.30)
is not optimal.
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Figure 6: Success probability for the change mixed to mixed with same purity and n = 9. The leftward plot
shows the dependence on θ for various purities r (dots) and the asymptotic solution for n large when r = 1.
The rightward plot shows the dependence on r for various representative θ, also the analytical solutions
found previously when θ = π. The dashed colour lines gives the Helstrom bound.

8Again, the y component is set to 0 as all the states in a plane perpendicular to the z direction have the same
success probability.

22



6. CONCLUSIONS

6 Conclusions

We have learnt about one of the most intrinsic problems of quantum mechanics which is Quantum
State Discrimination, providing a consistent technique build upon a measurement strategy to best
discriminate any set of states. Reviewed the analytical conditions to be met by a discrimination
strategy to be optimal which showed to be the same as in the SDP formulation. This numerical
technique allows to find exact solutions to the discrimination problem. However, the complexity of
the problem in the presence of noise grows exponentially with the number of qubits, in contrast to
the case of pure states which grows linearly. Therefore, we considered an iterative method which
showed to be efficient and used SDP to benchmark their performance when possible. This last
method, despite not being exact, converged very rapidly to the solution.

The study of the QCP started by considering the change from a pure to a mixed state. In this
regime, an analytical expression for the probability and the measures where found when both states
are aligned over the same diameter of the Bloch sphere. The best guess to be made was the best
classical guess since both states diagonalise in the same basis and thus the quantum states could be
interpreted as classical probability distributions. The numerical values obtained adjusted perfectly
with the theoretical result.

The previous example led to the generalisation of a pure state going to another mixed state.
First, we provided a bound on the probability by building a projective measure with the best local
discrimination protocol given by Helstrom. This showed to be a good approximation, despite not
being optimal, when comparing with the numerical results obtained by the iterative algorithm with
a precision up to the 6-th floating point position. Moreover, taking the second state as pure and for
a large number of qubits, the bound proposed provided a good approximation to the asymptotic
solution already found in literature for the QCP with two pure states.

The next logical step was to remove the purity of the first state and consider the change point
problem among two mixed steps. At first, by taking both of them over the same diameter. As
before, this problem could be understood using classical means with the aid of the theory of random
walks. This was found to have no known analytical solution in the general case. However, for a
symmetric change, we could find an analytical expression in the asymptotic regime. Under this
specific situation, the numerical results showed to tend to the asymptotic solution while the Helstrom
measurement gave a lower bound for the probability. Lastly, for completeness, we generalised the
previous to post change states outside the diameter, comparing the numerical results with the best
projective measurement. The latter showed clearly to be suboptimal.

To conclude, we can state that a projective measurement provides a good approximation to the
probability of success for QCP problems when the initial state is pure but poorly fits the numerical
results when both are mixed states, before and after the change.

The future work to be done is somehow clear, find the solution for the general problem between
two states. Nevertheless, a more feasible goal would be to provide the optimal measure to the pure
to mixed case and next to perform further simulations in order to find a good expression for the
mixed to mixed case.
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A Semi-Definite Programming

The form of the primal problem given in the main text can be generalised to

max
X

trAX

Φ[X] ≤ B (A.1)

X ≥ 0

It differs in the constraint where the equality has been relaxed to a inequality. Consequently, the
space of all feasible solutions increases and its optimal value might change.

However, we can rephrase the previous problem with inequality to a problem with equality by
the introduction of a slack variable. Thus, the inequality Φ[X] ≤ B is the same as Φ[X] +Z = B for
some Z ≥ 0 such that Z ∈ Y. Then, the whole problem can be reformulated with the introduction
of Z, define

Ã = A⊕ 0

X̃ = X ⊕ Z

and the map
Φ̃[X̃] = Φ[X] + Z

Using these definitions, the triplet (Ã, B, Φ̃) constitute the equivalent SDP problem to (A.1) with
an equality constraint.

The set of feasible solutions may easily be checked to be convex. Take X,Y ∈ FP (X ) then
Z = λX + (1− λ)Y satisfies

• Φ[Z] = Φ[λX + (1− λ)Y ] = λΦ[X] + (1− λ)Φ[Y ] = λB + (1− λ)B = B.

• For a general |u〉, 〈u|Z|u〉 = λ 〈u|X|u〉 + (1 − λ) 〈u|Y |u〉 ≥ 0 because, by hypothesis, X,Y
are both positive and λ ∈ [0, 1]. �

Therefore, Z is also inside FP (X ) and we conclude that any feasible solution can be constructed
by a convex combination of two others.

A geometric interpretation of the problem follows from the linear programming problem. The
feasible region consist of the boundary curve that encloses the region where X ≥ 0, i.e. those
positive matrix which satisfy Φ[X] = B. Roughly speaking, the semi-definite program tries to move
towards A while staying in the feasible region [Vandenberghe and Boyd, 1996]. For this reason, it is
important that the feasible region is a convex set, so we can move from one solution to another
without problems. Therefore, provided that the problem is feasible, i.e. FP (X ) 6= ∅, there is always
an optimal solution on the boundary Xopt.

The relationship between the primal and dual problem is obtained by considering the Lagrangian

L = trAX + tr[Y (B − Φ[X])] + trZX (A.2)

where Y, Z act as Lagrange multipliers taking into account the constraints in eq. (3.1), we also
require Z ≥ 0 and Y = Y †. Then, using eq. (3.5), the Lagrangian can be rewritten as

L = trAX + trY B − tr(Φ∗[Y ]X) + trZX = trY B + tr[(A+ Z − Φ∗[Y ])X] (A.3)

The minimum is then found by extremizing the function with respect to X,

∂L
∂A

= A+ Z − Φ∗[Y ] = 0 =⇒ Φ∗[Y ] = A+ Z ≥ A (A.4)

which is the condition set in eq. (3.4) for the dual problem. �
The dual problem provides us with a way to check if a solution to the primal is optimal. First,

let’s formulate a theorem stating a relation between α and β [Watrous, 2011].
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Theorem 2 (Weak duality). For every semi-definite program (Φ, A,B) it holds that α ≤ β.

Proof. The proof is trivial in the case FP = ∅ or FD = ∅ because either α = −∞ and β = ∞
which automatically hold. For non empty sets, if X ∈ FP and Y ∈ FD it holds that

trAX ≤ tr Φ∗[Y ]X = trY Φ[X] = trY B

Taking the supremum over all X ∈ FP and the infimum over all Y ∈ FD we obtain α ≤ β.

As a consequence, because α ≥ trAX and β ≤ trY B, it also holds that

trAX ≤ α ≤ β ≤ trY B (A.5)

for all X ∈ FP and Y ∈ FD. Indeed, if one finds a feasible solution for the primal problem X
and another for the dual Y for which trAX = trY B then α = β and therefore, X and Y must be
optimal solutions. This is called strong duality but it may not hold for all SDP problems. However,
for physical problems it is usually possible to find such X and Y so that α = β [Watrous, 2011].

A.1 Numerical solvers

In order to solve SDP problems numerically we will use the MATLAB solver YALMIP designed
to solve this type of problems among many others [Löfberg, 2004]. Numerical optimisation of SDP
problems comes with a weighty package of methods from which YALMIP chooses the suitable one
depending on the form of the conditions. Also, it includes an option to use other solvers apart from
the default YALMIP solver, which we will use as a test to check if a given solution is indeed a
solution or may be a consequence of numerical or algorithmic errors. For it, we will use the SDPT3
solver [Toh et al., 1999] and the SeDuMi solver [Sturm, 1999].9

Even if we program only the primal problem, each solver will compute both primal and dual
individually and return a solution if any of the two conditions of Theorem 1 are satisfied. Even
though the program considers them as optimal solutions, we will check numerical reliability with
the Lagrange operator constructed from the output of the program. Consider that the program
outputs the set of operators {Π̃j}, we will do this in two steps:

1. Check that the output is feasible and indeed satisfy the conditions of the SDP problem. This
is done through the method check() implemented by YALMIP which evaluates the smallest
eigenvalue of the conditions. For instance, in the SDP problem eq. (3.14) it will compute

the minimum eigenvalue of λ1 = minλ Ỹ − A and the maximum λmax
2 and minimum λmin

2

eigenvalue of Y −Y †. The solution {Π̃j} is considered feasible if λ1 > 0 and λmax
2 = λmin

2 = 0.

Of course, numerical methods are never exact and there may be approximation errors.
Consequently, we will add a small tolerance ε when we check this conditions. Thus, a solution
will be considered approximately feasible if λ1 + ε > 0 and λmax

2 , λmin
2 ∈ (−ε, ε).

If this is not the case, {Π̃j} /∈ FP and we may investigate why.

2. The previous check is successful and we conclude that {Π̃j} ∈ F . We must now find out
whether it is optimal or not by using the optimality condition eq. (2.8). This will be done
in a similar way as before, computing the minimum eigenvalue λk = minλ Γ− ξkρk for each
ρk ∈ Ξ. Only when λk(+ε) ≥ 0 ∀k the solution will be taken as optimal.

9The three libraries used are open source and the url to the GitHub repositories may be found in the references.
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B Simple Random Walk

A Random Walk is a random process by which objects moves according to some probability
distribution P. In the present work, we are interested in the simplest of all, a one dimensional RW
with only two possible movements which we identify by up and down. A step is characterised by a
random variable x that can take the value +1 with probability p and −1 with probability 1−p. The
random variables xi are said to follow a Bernoulli distribution B(p) = {p, 1− p} where 0 ≤ p ≤ 1.
A path Xn of length n is just a sequence of steps {x1, . . . , xn}. We define the accumulated sum as

Sk(Xn) = a+

k∑
l=1

xl (B.1)

where a is our starting point. In simpler words, Sn gives us the position of the walker from a at the
n-th step. The motion of the particle following Xn is recorded as the list of points {(k, Sk)}nk=0

which constitute a path on a plane.
Denote by Nk(a, b) the number of paths from a to b in k steps, the total number of steps is

exactly the number of up and down steps, u and d respectively, and from (B.1) it can be seen that
b− a = u− d. Thus, the number of up and down steps is

u =
1

2
(k + b− a) (B.2a)

d =
1

2
(k − b+ a) (B.2b)

Then, Nk(a, b) is the total number of permutations of exactly u up steps and d down steps [Feller,
1968]

Nk(a, b) =

(
k

1
2 (k + b− a)

)
=

(
k

1
2 (k − b+ a)

)
(B.3)

so the probability of ending at Sk = b if the walker follows the distribution B(p) is

P (Sk = b) = Nk(a, b)p(k+b−a)/2(1− p)(k−b+a)/2 (B.4)

The binomial coefficient should be understood to be 0 unless (n+ b− a)/2 is an integer, for which
the binomial has the expression (

k

j

)
=

k!

j!(n− k)!
=

(
k

k − j

)
(B.5)

In the process of going to b, the walker may or may not have gone through the origin. Let
N0
k (a, b) be the number of paths within Nk(a, b) that visit the origin, i.e. Sj = 0 for some 0 < j ≤ k.

The reflection or mirror theorem tells us that

Theorem 3 (Mirroring). If a, b > 0 then N0
k (a, b) = Nk(−a, b).

By virtue of the reflection theorem we can calculate many results of random walks. For instance,
consider the so called Ballot problem, how many paths are there from (0, 0) to (k, b) (b > 0) such
that the walker never returns to the origin? Under this conditions, the first step is already fixed to
go to (1, 1), then we must calculate the number of paths of k − 1 steps from (1, 1) to (k, b) and
subtract those which touch the origin [Grimmett and Stirzaker, 2001]. Using Theorem 3, we end
up with

N>0
k (0, b) = Nk−1(1, b)−N0

k−1(1, b) = Nn−1(1, b)−Nn−1(−1, b) =
b

n
Nn(0, b) (B.6)

The probability for this to happens is

P (Sj > 0 ∀j > 0, Sk = b) =
b

n
P (Sk = b) (B.7)
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C Supplemental calculations for Section 5

C.1 Pure vs. Mixed

C.1.1 Along the diameter

First of all, let’s write the form of the density matrices ρk for this problem. From eq. (5.1), their
expression in the computational basis {|j〉}2n−1

j=0 is

ρk = |0〉〈0|⊗k ⊗

 1∑
j=0

1 + (−1)jr

2
|j〉〈j|

⊗(n−k)

=

1∑
j0,j2,...,jn−k−1

=0

(
1 + r

2

)n−k−∑n−k−1
l=0 jl (1− r

2

)∑n−k−1
l=0 jl ∣∣∣0 k· · ·0j0 . . . jn−k−1

〉〈
0
k· · ·0j0 . . . jn−k−1

∣∣∣
=

2n−k−1∑
j=0

(
1 + r

2

)n−k−S(j)(
1− r

2

)S(j)

|j〉〈j| (C.1)

where S(j) =
∑n−1
l=0 jl =

∑n−k−1
l=0 jl counts the number of ones in the n-bit binary number

j = (j0 . . . jn−k−10 k. . .0). In other words, S(j) counts the number of states |1〉 in each state

|j〉 = |j0〉 · · · |jn−k−1〉 |0〉⊗k. It is important to see that ρk has a block form with only the first 2n−k

diagonal terms different from zero. This fact allows a straightforward calculation of the operators
in the measure as seen in Appendix C.1.1. Their exact form is

From the expression of the states in eq. (C.1), the form of the measures can be simplified by
seeing that the only contribution to the success probability comes from the trace of the product
Πkρk. Writing Πk in the computational basis in the most general form, we have

tr[Πkρk] = tr

∑
i,j

πkijρ
k
jj |i〉〈j|

 =

2k−1∑
j=0

πkjjρ
k
jj (C.2)

So the success probability only depends on the diagonal elements of the operators Πk, consequently
we can make all the other components identically 0 since they do not have any effect on the final
result and express them as

Πk =

2n−k−1∑
j=0

πkj |j〉〈j| k = 1, . . . , n (C.3)

with πkj ≥ 0 ∀j, k as restricted by the problem.
We also have that the observables Πj must satisfy the completeness relation (1.5a). The only

operator which is not partially filled with zeros is Π0, the next one Π1 has only 2n−1 non-vanishing
variables on the first half of the diagonal, Π2 has 2n−2 and so on. In general, the Πj operator has
2n−j non-vanishing elements starting from the top of the diagonal. Thus, the completeness relation
induces 2n equations

n−k∑
j=0

πjik = 1 ik = 2k−1 + 1, . . . , 2k ∀k = 1, . . . , n (C.4)

When k = n, only Π0 takes part in the sum so [π0]ii = 1 for i = 2n−1 + 1, . . . , 2n. The next
one, k = n− 1, has two terms in the sum corresponding to the operators Π0 and Π1: π0

i + π1
i =

1 i = 2n−1 + 1, . . . , 2n. The exact value for the two variables can be evaluated by maximising
the success function over them, indeed, their contribution to the probability is proportional to
fi(x0, x1) = ρ0

iπ
0
i + ρ1

iπ
1
i . This problem is a simple SDP that can be analytically solved and gives

that the maximum, under the constraints, is attained when π1 = 1 and π0 = 0 since ρ1
i ≥ ρ0

i ∀i and
∀t. This process can be done for all k but, at the end of the day, one obtains that the operators are
separable in the subspaces (H2)⊗n and have the form as shown in eq. (5.7).
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Yet, in order to be sure that this is indeed optimal, we need to check the Holevo condition (2.8).
The Lagrange operator associated to the measure (5.7) reads

Γ =
1

n+ 1
|0〉〈0|+ 1

n+ 1

2n−1∑
j=1

(
1 + r

2

)blog2 jc+1−S(j)(
1− r

2

)S(j)

|j〉〈j| (C.5)

where bxc rounds x to the greatest integer less than or equal to x.
The operator in eq. (C.5) is hermitian and positive as required for a valid measure. Using the

expression for ρk in eq. (C.1), we have

(n+ 1)Γ− ρk =

[
1−

(
1 + r

2

)k]
|0〉〈0|

+

2n−k−1∑
j=1

[(
1 + r

2

)blog2 jc+1

−
(

1 + r

2

)n−k](
1− r
1 + r

)S(j)

|j〉〈j|

+

2n−1∑
j=2n−k

(
1 + r

2

)blog2 jc−1−S(j)(
1− r

2

)S(j)

|j〉〈j|

and since 0 ≤ (1 − r)/2 ≤ 1 and 0 ≤ (1 + r)/2 ≤ 1, we automatically see that the elements
in the first and third line are positive. The elements in the second line will be non-negative if
n− k ≥ blog2 jc+ 1, because the logarithm is a monotonous continuous function, the maximum
value it can take in the sum is blog2(2n−k − 1)c = n− k− 1 and the condition is satisfied identically.
Thus, the Holevo condition holds, concluding that the POVM formed by the operators in eq. (5.7)
is optimal and eq. (5.6) gives the maximum success probability.

There are only two special cases at the poles of the Bloch sphere, where ρ̃ is a pure state. At
this points, the state after the change is either indistinguishable (r = 1) or orthogonal (r = −1)
and so, perfectly distinguishable. The measure in both cases is degenerate, there is another POVM,
apart from the one found in eq. (5.7), that achieve the same success probability and it is optimal.
In the first case, r = 1, the measure is just given by Πn = I with the others set to Πk = 02n for
k = 0, . . . , n − 1. Clearly, the SDP is telling us not to waste any effort in identifying the other
states as, effectively, there is only one possible outcome. In the second case, r = −1, the states are
orthogonal ρjρk = ρkδjk and the measure is given by the projection onto each of them{

Πj = |0〉〈0|⊗j ⊗ |1〉〈1|⊗(n−j) ∀j = 0, . . . , n− 1

Πn = I2n −∑n−1
j=0 Πj

(C.6)

The operators {Πj}nj=0 can also be written, as well as the respective state ρj , as Πj =
∣∣2j − 1

〉〈
2j − 1

∣∣
in the computational basis {|j〉}2n−1

j=0 . These constitute a POVM with Lagrange operator Γ =∑
k ξkρk that trivially satisfies the Holevo condition.
The results of the SDP are presented in fig. 7. The numerical values fit perfectly over the

analytical line for all n. The primal and dual solutions are the same as expected from Theorem 1
for an optimal solution. In addition, the increase in the number of qubits makes the slope tend to
the limiting value of −1/2, which is never reached.

Numerical solution Before computing the solution of the problem, we can further simplify its
declaration to reduce the number of operations. As we saw, only the diagonal element of Πj and ρk
take part in the computation, which are all positive and non-negative. By identifying diag(M) as
the column vector containing the diagonal elements of matrix M , we define the following objects

X =
(

diag(Π0) diag(Π1) · · · diag(Πn)
)

(C.7)

A =
(

diag(ρ0) diag(ρ1) · · · diag(ρn)
)t

(C.8)

B = diag(I2n) = 12n (C.9)
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Figure 7: Numerical solution to the QCP problem between a pure and mixed state along the diameter.

where 1d is a vector full of ones of dimension d. The primal map associated to the problem can be
expressed as

Φ[X] = X1n+1 =

n∑
k=0

Xk (C.10)

which sums, for each row, all the columns.
Then, the triplet (A,B,Φ) as defined in eqs. (C.8) to (C.10) composes the primal and dual SDP

problem
Primal

max
X

1

(n+ 1)
tr(XA)

X1n+1 = 12n

Xjk ≥ 0 ∀j, k

Dual

min
y
‖y‖1

y ≥ 1

n+ 1
diag(ρk) ∀k

(C.11)

In the definition of the dual, y contains the diagonal elements of the Lagrange operator (2.9).
Also, there is no need to impose the positivity condition y ≥ 0 as it is implicit in the previous one,
just because the diagonal elements of ρk are positive. The objective function, in complete analogy
with eq. (3.4), should be y · 12n but we have simplified this by noting that this product sums all
the elements of y and since the last condition in eq. (C.11) imposes that all the components of the
vector must be positive: y · 12n =

∑
i yi =

∑
i |yi| = ‖y‖1.

C.1.2 To any mixed state

The inflexion point as a function of θ is evaluated by equating the second derivative of Ps with
respect to θ to 0,

∂Ps
∂θ

=
nr sin θ

2(n+ 1)
√

1 + r2 − 2r cos θ

∂2Ps
∂θ2

=
nr cos(θ)

2(n+ 1)
√

1 + r2 − 2r cos θ
− nr2 sin2(θ)

2(n+ 1) (1 + r2 − 2r cos θ)
3/2

Thus, the solutions to ∂2Ps/∂θ
2 = 0 are

θ = ± arccos r & θ = ± arccos
1

r

The second is not valid because arccos is not defined for 1/r ∈ [1,∞), therefore the only possibilities
are θinf = ± arccos r. The choice of the sign will depend on the concavity of Ps before and after the
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change, indeed we know that it must go from positive to negative, which shows that the correct sign
is the positive. This makes sense from the same structure of the graphs, for r → 0⇒ θinf → π/2
and for r → 1⇒ θinf = 0, i.e. the concavity of Ps doesn’t change in this range.

The minimum on r can be evaluated in a similar way, the first derivative of eq. (5.14) gives

∂Ps
∂r

=
n(2r − 2 cos θ)

4(n+ 1)
√

1 + r2 − 2r cos θ

which vanishes at rmin = cos θ. In fact, both solutions are the same, the minimum in the probability
appears when r and θ satisfy the relation r = cos θ.

The limit n� 1 is simply the term multiplying n in eq. (5.12),

Ps ≈
‖r̃ − r‖2

2
(C.12)

Figure 10 as well as fig. 3 show the numerical solutions together with this approximation. As
said in the main text, they where obtained by imposing a precision of 10−6 in the probability. After
doing the experiment, this was seen to happen before 10 iterations, see fig. 8, the error between
the first and second iterations is large as the initial guess is far from being optimal but just with
the second iteration the relative error is not larger than 0.1% for n = 3. Shortly, after the 6-th
iteration, the error becomes smaller than 10−6 as required and the convergence of the method is
proved. Furthermore, the convergence is seen to be exponentially fast. A linear regression with the
data in fig. 8 show that the error e decays with the iterations i as

e ≈ 10−( i
a +b) (C.13)

with a = 2.15±0.23 and b = 2.68±0.17. This tells us that the iterative method achieves a new digit
of precision every two iterations. Therefore, to achieve a numerical accuracy up to the 6-th decimal
position, the number of iterations should be at least seven. However, we will leave a standard of 10
iterations in order to reduce as maximum as possible this error, more iterations would not make
sense as we will start having errors due to the floating point precision of the computer used.

A final test was made by running the SDP program for n = 3. Comparing those values (see
fig. 9) with the ones in fig. 10a showed a discrepancy of at most a 0.02%, validating the results
obtained through the iterative method.

C.2 Mixed vs. Mixed

C.2.1 Along the diameter

The expression for the states is a little bit tricky to find. First, taking as reference eq. (C.1), we
can write the expression for the two separate parts of each ρk = ρ⊗k ⊗ ρ̃⊗(n−k),

ρ⊗k =

2k−1∑
i=0

(
1 + ti

2

)k−S(i)(
1− ti

2

)S(i)

|i〉〈i|

ρ̃⊗(n−k) =

2n−k−1∑
j=0

(
1 + tf

2

)n−k−S(j)(
1− tf

2

)S(j)

|j〉〈j|

where S(i) is a before the number of ones in i. Then, the tensor product of both parts gives

ρk =

2k−1∑
i=0

2n−k−1∑
j=0

(
1 + ti

2

)k−S(i)(
1− ti

2

)S(i)(
1 + tf

2

)n−k−S(j)(
1− tf

2

)S(j) ∣∣i2n−k + j
〉〈
i2n−k + j

∣∣
=

2n−1∑
x=0

(
1 + ti

2

)k−Sn
n−k(x)(

1− ti
2

)Sn
n−k(x)(

1 + tf
2

)n−k−Sn−k
0 (x)(

1− tf
2

)Sn−k
0 (x)

|x〉〈x|

Defining Sba(x) ≡∑b−1
l=a xl as the partial sum of the binary number x. The previous expression is

similar to the one shown in the main text but not exactly, to go from this one to the other we need
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Figure 8: Convergence of the iterative algorithm for the pure to mixed case within 10 iterations (a
logarithmic scale is used for the y axis). The dashed lines represent the linear fit of the corresponding
values.
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Figure 10: Numerical solution (dots) for various n in the pure to mixed case together with the Helstrom
bound (solid lines).
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to take into account that the sum is over all x ∈ {0, 1}n. Therefore, we can take the last k bits to
the beginning of the sequence and define x′ = i+ 2kj in such a way that Sn−k0 (x) = Snk (x′) and
Snn−k(x) = Sk0 (x′). After performing this change and relabelling x′ as x, eq. (5.18) is obtained.

We seek to find the probability of having a maximum at some position of the random walk
which we have seen that is equivalent to finding the probability of a RW not crossing and not
returning to the origin. The exact form corresponds to the sum over all paths having a maximum
in k, that is, for a fixed number of up steps there are N>0

k (0, u− d) paths and the probability for
this is given by eq. (B.7). After the change has occurred, we only impose that the walker should
not go further than this maximum, by the mirror theorem, the number of such paths is the same
as the number of paths that cross the maximum starting at b+ 1 and ending at some point c ≤ b
in n− k − 1 steps. The sum is then taken for all the change point positions and all the possible
maximums. Unfortunately, there is no analytical solution for this but we can work out in the limit
of a large number of steps for a symmetric walker.

Symmetric Take the right hand part, the steps of the walker are distributed according to
B(1− p) = {1− p, p}. Note that the no crossing probability is 1 minus the probability of crossing.
Denote by Tjk the time (number of steps) it takes to go from j to k. Then, P [T01 <∞] gives the
probability of crossing in a finite time which is given by

P [T01 <∞] = (1− p) + pP [T−11 <∞] = (1− p) + pP [T01 <∞]2 (C.14)

The first part takes into account the probability of going up (and crossing) in one step and the
second considers the case that the walker goes down in one step times the probability of going from
−1 to 1 in finite time. This last value is just the probability of going from −1→ 0 and then from
0→ 1, i.e. two times that of going from 0→ 1.

The previous relation is just a quadratic equation whose solutions are

P [T01 <∞] =

{
1 p ≥ 1/2

p/(1− p) p < 1/2
(C.15)

which is to say that a walker biased in going up will eventually pass through the origin, even in the
case of a symmetric walker with p = 1/2. We have skipped a lot of formalities in this derivation,
for a complete explanation I refer to Feller [1968, Chapter XIV, Section 2] in terms of difference
equations or to Grimmett and Stirzaker [2001, Chapter 5, Section 3] using the generating function
of the Bernoulli distribution.

Take now the left hand part, this walker follows the Bernoulli distribution B(p) = {p, 1− p}
but is restricted to be always on the negative side without ever returning to the origin, otherwise it
would mean that there is a maximum before this one. As before, the probability of not returning is
1 minus the probability of returning, which by eq. (C.15) is

P [T00 <∞] = pP [T10 <∞] + (1− p)P [T−10 <∞] = p
1− p
p

+ (1− p) = 2p = 1− |2p− 1| (C.16)

where the last equality follows when considering the two cases p ≥ 1/2 and p < 1/2.
Putting together the results in eqs. (C.15) and (C.16), considering p > 1/2, we end up with

Ps ≈ (1− P [T00 <∞]) (1− P [T01 <∞]) =
(2p− 1)2

p
(C.17)

Finally, using p = (1 + r)/2 we obtain eq. (5.26).

C.2.2 Equally mixed states

We do not provide the exact expression for the success probability for this case because it is not
illustrative given the poor approximation that it gives to the numerical solution. In any case, it
would be evaluated from eq. (5.27) with the corresponding expressions for ρ and ρ̃.

The success probability for n = 3 and n = 6 can be seen in fig. 13. In the case n = 3, the values
are compared to those obtained via SDP. Figure 11 shows the relative error between the two values
which doesn’t go over a 0.1%, again validating the results of the iterative algorithm.
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Figure 11: Relative error between SDP and the iterative method for n = 3 in the case of equally mixed
states.

In a similar way as we did previously, we will compute the error between iterations. The data
is shown in fig. 12 with the linear fit. The error decays exponentially fast with the iterations, a
linear fit shows that the dependence on the number of iterations decays like in eq. (C.13) with
a = 4.069± 0.020 and b = 0.798± 0.096. As compared to the pure to mixed, the decay rate is two
times small, that is, we need to double the number of iterations to achieve the same precision as
before.
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Figure 12: Convergence of the iterative algorithm for the mixed to mixed case within 10 iterations (a
logarithmic scale is used for the y axis). The dashed lines represent the linear fit of the corresponding
values.
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Figure 13: Numerical solution (dots) for various n in the equally mixed case together with the approximate
solutions (dashed lines).
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